1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
/// Macro to define a parser for one or more string literals, mapping the results.
///
/// This is a replacement for
/// [`parser::one_of`](crate::parser::one_of())`(("a".map(|_| Enum::A), "b".map(|_| Enum::b)))`
/// which produces more optimized assembly and is easier to read and write.
///
/// The string patterns are matched in the order provided, so strings should be ordered by length.
///
/// Using this makes [2017 day 11](../../year2017/struct.Day11.html), which parses a sequence of
/// literals separated by commas, over 2x faster.
///
/// # Examples
/// ```
/// # use utils::parser::{Parser, self};
///
/// #[derive(Debug, PartialEq)]
/// enum Example {
///     A,
///     B,
///     C,
/// }
///
/// let parser = parser::literal_map!(
///     "A" | "a" => Example::A,
///     "B" => Example::B,
///     "C" => Example::C,
/// );
/// assert_eq!(parser.parse(b"A"), Ok((Example::A, &b""[..])));
/// assert_eq!(parser.parse(b"a"), Ok((Example::A, &b""[..])));
/// assert_eq!(parser.parse(b"B"), Ok((Example::B, &b""[..])));
/// assert_eq!(parser.parse(b"C"), Ok((Example::C, &b""[..])));
/// assert!(parser.parse(b"D").is_err());
/// ```
#[macro_export]
macro_rules! parser_literal_map {
    (
        $($($l:literal)|+ => $e:expr),+$(,)?
    ) => {{
        fn coerce_to_parser<F: Fn(&[u8]) -> $crate::parser::ParseResult<'_, O>, O>(f: F) -> F { f }

        coerce_to_parser(|input| {
            $($(
                if input.len() >= const { $l.len() } && const { $l.as_bytes() } == &input[..const { $l.len() }] {
                    return Ok((($e), &input[const { $l.len() }..]));
                }
            )+)*

            Err(($crate::parser_literal_map!(@error $($($l)+)+), input))
        })
    }};
    (@error $first:literal $($l:literal)+) => {
        $crate::parser::ParseError::Custom(concat!("expected one of '", $first, "'", $(", '", $l, "'",)+))
    };
    (@error $first:literal) => {
        $crate::parser::ParseError::ExpectedLiteral($first)
    };
}

/// Macro to define a custom parser using a `match` inspired parse tree syntax.
///
/// Each rule is made up of a list of chained parsers enclosed in brackets on the left-hand side.
/// Parsers can be prefixed with an identifier followed by `@` to store the result of that parser in
/// the supplied variable, similar to normal match patterns.
///
/// After the list of parsers, there is an arrow determining the functionality of the rule when the
/// parsers match:
/// - **Expression (`=>`)**: The expression on the right-hand is evaluated and returned.
/// - **Fallible (`=?>`)**: Similar to Expression, but the right-hand side evaluates a result. If
///         the expression evaluates to [`Ok`], the value contained inside is returned. Otherwise,
///         the string contained inside the [`Err`] is handled as a custom
///         [`ParseError`](super::ParseError), and parsing will continue with the following rule.
/// - **Subtree (`=>>`)**: The right-hand side is a nested set of rules enclosed in braces.
///
/// If none of the rules match successfully, the error from the rule which parsed furthest into
/// the input is returned.
///
/// # Examples
/// ```
/// # use utils::parser::{self, Parser};
/// #
/// #[derive(Debug, PartialEq)]
/// enum Register {
///     A, B, C
/// }
///
/// #[derive(Debug, PartialEq)]
/// enum Instruction {
///     Add(Register, Register),
///     AddConstant(Register, i32),
///     Copy(Register, Register),
///     Noop,
/// }
///
/// let register = parser::literal_map!(
///     "A" => Register::A, "B" => Register::B, "C" => Register::C,
/// );
///
/// let instruction = parser::parse_tree!(
///     ("add ", r @ register, ", ") =>> {
///         (r2 @ register) => Instruction::Add(r, r2),
///         (v @ parser::i32()) => Instruction::AddConstant(r, v),
///     },
///     ("copy ", r @ register, ", ", r2 @ register) =?> {
///         if r == r2 {
///             Err("cannot copy register to itself")
///         } else {
///             Ok(Instruction::Copy(r, r2))
///         }
///     },
///     ("noop") => Instruction::Noop,
/// );
///
/// assert_eq!(
///     instruction.parse_complete("add A, B").unwrap(),
///     Instruction::Add(Register::A, Register::B)
/// );
/// assert_eq!(
///     instruction.parse_complete("add C, 100").unwrap(),
///     Instruction::AddConstant(Register::C, 100)
/// );
/// assert_eq!(
///     instruction.parse_complete("copy A, B").unwrap(),
///     Instruction::Copy(Register::A, Register::B)
/// );
/// assert!(instruction
///     .parse_complete("copy A, A")
///     .is_err_and(|err| err.to_string().contains("cannot copy register to itself")));
/// ```
#[macro_export]
macro_rules! parser_parse_tree {
    (@rule $input:ident $furthest_err:ident $furthest_remaining:ident [$(,)?] @expr $rhs:expr) => {
        return Ok(($rhs, $input));
    };
    (@rule $input:ident $furthest_err:ident $furthest_remaining:ident [$(,)?] @expr_res $rhs:expr) => {
        match $rhs {
            Ok(v) => return Ok((v, $input)),
            Err(e) => {
                if $input.len() < $furthest_remaining {
                    $furthest_err = $crate::parser::ParseError::Custom(e);
                    $furthest_remaining = $input.len();
                }
            }
        };
    };
    (@rule $input:ident $furthest_err:ident $furthest_remaining:ident [$(,)?] @subtree $($rhs:tt)+) => {
        $crate::parser_parse_tree!(@toplevel $input $furthest_err $furthest_remaining $($rhs)+);
    };

    (@rule $input:ident $furthest_err:ident $furthest_remaining:ident
        [$n:ident @ $lhs:expr $(,$($tail:tt)*)?] $($rhs:tt)+
    ) => {
        match $crate::parser::Parser::parse(&($lhs), $input) {
            Ok(($n, $input)) => {
                $crate::parser_parse_tree!(@rule $input $furthest_err $furthest_remaining
                    [$($($tail)*)?] $($rhs)+
                );
            },
            Err((err, remaining)) => {
                if remaining.len() < $furthest_remaining {
                    $furthest_err = err;
                    $furthest_remaining = remaining.len();
                }
            }
        };
    };
    (@rule $input:ident $furthest_err:ident $furthest_remaining:ident
        [$lhs:expr $(,$($tail:tt)*)?] $($rhs:tt)+
    ) => {
        match $crate::parser::Parser::parse(&($lhs), $input) {
            Ok((_, $input)) => {
                $crate::parser_parse_tree!(@rule $input $furthest_err $furthest_remaining
                    [$($($tail)*)?] $($rhs)+
                );
            },
            Err((err, remaining)) => {
                if remaining.len() < $furthest_remaining {
                    $furthest_err = err;
                    $furthest_remaining = remaining.len();
                }
            }
        };
    };

    (@toplevel $input:ident $furthest_err:ident $furthest_remaining:ident
        ($($lhs:tt)+) => $rhs:expr $(, $($tail:tt)*)?
    ) => {
        $crate::parser_parse_tree!(@rule $input $furthest_err $furthest_remaining [$($lhs)+] @expr $rhs);
        $($crate::parser_parse_tree!(@toplevel $input $furthest_err $furthest_remaining $($tail)*);)?
    };
    (@toplevel $input:ident $furthest_err:ident $furthest_remaining:ident
        ($($lhs:tt)+) =?> $rhs:expr $(, $($tail:tt)*)?
    ) => {
        $crate::parser_parse_tree!(@rule $input $furthest_err $furthest_remaining [$($lhs)+] @expr_res $rhs);
        $($crate::parser_parse_tree!(@toplevel $input $furthest_err $furthest_remaining $($tail)*);)?
    };
    (@toplevel $input:ident $furthest_err:ident $furthest_remaining:ident
        ($($lhs:tt)+) =>> {$($rhs:tt)+} $(, $($tail:tt)*)?
    ) => {
        $crate::parser_parse_tree!(@rule $input $furthest_err $furthest_remaining [$($lhs)+] @subtree $($rhs)+);
        $($crate::parser_parse_tree!(@toplevel $input $furthest_err $furthest_remaining $($tail)*);)?
    };
    (@toplevel $input:ident $furthest_err:ident $furthest_remaining:ident $(,)?) => {};

    // Ensures this branch only matches inputs starting with (, giving each rule set a unique prefix
    (($($first:tt)+) $($tail:tt)+) => {{
        fn coerce_to_parser<F: Fn(&[u8]) -> $crate::parser::ParseResult<'_, O>, O>(f: F) -> F { f }

        coerce_to_parser(|input| {
            let mut furthest_err = $crate::parser::ParseError::Custom("unreachable");
            let mut furthest_remaining = usize::MAX;

            $crate::parser_parse_tree!(@toplevel input furthest_err furthest_remaining ($($first)+) $($tail)+);

            Err((furthest_err, &input[input.len() - furthest_remaining..]))
        })
    }};
}